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Abstract

A model for the rotational behaviour of flow in bimineralic rocks based on the concept of a multiphase continuum is developed here. An
additive relation with respect to the vorticity is assumed. The ideal linear viscous bimineralic rocks are defined such that (i) both the bulk rock
and the constituent phases have linear viscous rheology, (ii) the phases are uniformly mixed and distributed in the rock, and (iii) no
segregation occurs during the deformation. The model reveals the partitioning of vorticity between the two phases in the ideal linear viscous
bimineralic rocks. The model shows that there are two modes of flow behaviour. In mode 1 there is neither partitioning of strain rate nor
vorticity; in mode 2 partitioning occurs for strain rate and vorticity. Mode 1 behaviour corresponds to upper bound behaviour and mode 2 to
the lower bound behaviour. There are two solutions for the partitioning of vorticity in mode 2: type 1 and type 2 partitioning. In the type 1
partitioning the more viscous phase is more rotational than the less viscous phase, while in the type 2 partitioning the former is less rotational
than the latter. In a special case where flow occurs by simple shearing and where the more viscous phase behaves as rigid particles, the
following two cases occur: (1) the more viscous phase rotates at twice the rate of the bulk rock (type 1 partitioning), (2) the more viscous
phase does not rotate at all with respect to the external reference coordinate (type 2 partitioning). The present model alone cannot predict

which type will occur and further theoretical and experimental work is needed. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The present paper contains an extension of Takeda
(1998), in which a model for flow in bimineralic rocks
was developed. The model is based on the concept of a
multiphase continuum. If a polymineralic rock is considered
as a multiphase continuum, additive relations for several
physical quantities may be assumed, that is, any quantity
for the bulk rock is equal to the sum of those for the con-
stituent phases. The additive relations are held as internal
restrictions on the flow behaviour of polymineralic rocks.
Takeda (1998) investigated the partitioning of deformation
rate into the constituent phases in bimineralic rocks by
means of several additive relations under a number of
assumptions. Three main additive relations were con-
sidered: deformation rate, which results from an additive
relation of linear momentum; viscous stress; and entropy
production rate (or dissipative energy). The main assump-
tions made are that (i) both the bulk rock and the constituent
phases have linear viscous rheology, (ii) the phases are
uniformly mixed and distributed evenly in the rock, and
(ii1) no temporal change occurs in the volume proportion
of each phase during the deformation (i.e. no segregation).
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Here we call such a modelled bimineralic rock the ideal
linear viscous bimineralic rock. In Takeda (1998) two pos-
sible types of partitioning behaviour of deformation rate
have been determined for an ideal linear viscous bimineralic
rock: mode 1 behaviour and mode 2 behaviour. In the
present paper it is shown that mode 1 behaviour and mode
2 behaviour correspond to the Voigt bound behaviour and
the Reuss bound behaviour, respectively (e.g. Hill, 1965).

Since a velocity gradient tensor can be decomposed into a
deformation rate tensor and a vorticity vector (or spin
tensor), a complete description of a flow field requires
knowledge of both the deformation rate and the vorticity.
Hence, it is attempted to determine the partitioning of vor-
ticity between the two constituent phases in an ideal linear
viscous bimineralic rock.

2. Flow of an ideal linear viscous bimineralic rock

Takeda (1998) derived several intrinsic relations for flow
of ideal linear viscous bimineralic rocks. The derived rela-
tions contain two types of equations; one is for the bulk rock
viscosity, the other for the partitioning of deformation rate
between the two phases.

The bulk rock viscosity is given by either (Takeda, 1998)

p=(1-b +b (D
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Fig. 1. Schematic curves showing the relation between the normalized bulk
rock viscosity (u* = u/p;) and the volume fraction of less viscous phase
(¢y) predicted by the model. Mode 1 behavior shows a linear relationship,
mode 2 behavior shows a non-linear relationship. b is a viscosity contrast
between the phases (u/p;). w is a bulk rock viscosity. u; is a viscosity of
less viscous phase. u, is a viscosity of more viscous phase.

or

* [a_ad)l +¢I]2b
R+ b-d)e,

(©))

where a is the density contrast defined by a = y,/y;; b is the
viscosity contrast defined by b = u,/u;; u” is the normal-
ized bulk rock viscosity defined by u" = wy/p; v, and y,
are densities of the more viscous phase and the less viscous
phase, respectively; w; and w, are viscosities of the more
viscous phase and of the less viscous phase, respectively; uy,
is the viscosity of the bulk rock, and ¢, is the volume frac-
tion of the less viscous phase. The presence of two equations
for the bulk rock viscosity implies that there are two types of
flow behaviour for an ideal linear viscous bimineralic rock.
Eq. (1) describes mode 1 behaviour and Eq. (2) mode 2
behaviour of Takeda (1998) (Fig. 1).

The deformation rate of each phase for mode 1 behaviour
is equal and given by

1 2 b
Those for mode 2 behaviour are
Dj=PD} and Dj=P,D}, 4)
where
bla — ad; + ¢p)
P, = . (o) , o i 3)
a-+ (b — a*)¢y
ala — ady + ¢y)

a+b—a)’
Dg» is a deformation rate tensor of the bulk rock, D,-lj is a
deformation rate tensor of the less viscous phase, and D?j isa
deformation rate tensor of the more viscous phase. P; and P,
are partitioning coefficients of deformation rate for each
phase.

Eq. (3) indicates that mode 1 behaviour corresponds to
the case of uniform deformation rate (strain rate). When the
density contrast between the two phases is unity, Eq. (4)
implies that viscous stresses of the two phases are related
by

Tj = mDyj = uuDj; = Ty, @

1 2 .
where T; and Tj; are viscous stress tensors of the less

viscous phase and more viscous phase, respectively,
while w; and w, are viscosities of the less viscous
phase and the more viscous phase, respectively. There-
fore, mode 2 behaviour corresponds to the case of a
uniform viscous stress when densities of the two phases
are the same. Consequently, mode 1 behaviour corre-
sponds with the so-called Voigt bound and mode 2
behaviour corresponds with the so-called Reuss bound
when no density contrast is present (e.g. Hill, 1965).
This is also evident from the fact that when two phases
have the same density Eq. (2) can be rewritten as

()

where ¢; and ¢, are volume fractions of the less viscous
phase and the more viscous phase, respectively, and where

b+ =1.

3. Partitioning of vorticity

The previous section explained partitioning of defor-
mation rate between the two phases for ideal linear
viscous bimineralic rocks. In order to better understand
the behaviour of the flow in two-phase rocks the partitioning
of vorticity is considered for ideal linear viscous bimineralic
rocks. However, it is difficult to obtain a general solution
because there are too many parameters that cannot be
constrained. For example, six parameters are needed to
describe the vorticity vectors of the two phases. It is
assumed, therefore, that vorticity vectors of the two phases
are parallel to each other in space, which is referred to as
‘homo-axial flow’ in this paper. This assumption is made
rather intuitively but is considered to be a reasonable one as
a first step of the present theoretical approach.

As mentioned above, for ideal linear viscous bimineralic
rocks it is assumed that the two phases are uniformly mixed
and that the volume fraction is kept constant. The total
linear momentum of the bulk rock in a given region is the
sum of the linear momentum of two phases as

YWVYp = Vi + g7 Vs, (8)

where V,, and vy, are the velocity vector and the density of
the bulk rock, V; and V, are velocity vectors of the less
viscous phase and of the more viscous phase, respectively,
and vy; and 7, are densities of the less viscous phase and of
the more viscous phase. If we further assume that two
phases have the same density, Eq. (8) is reduced to

Vo=V + Vs )
Taking the curl of Eq. (9) produces
Wy, = @) + Pro, (10)

where wy, is the vorticity vector of the bulk rock and w; and
w, are vorticity vectors of the less viscous phase and the
more viscous phase, respectively.



Y.-T. Takeda / Journal of Structural Geology 23 (2001) 1319—-1324 1321

In homo-axial flow the vorticity vector for the less
viscous phase w; and the more viscous phase w, are
given by

®; = awy, (1)

@, = Pay, (12)

where « and B are vorticity partitioning coefficients for the
less viscous phase and the more viscous phase, respectively.
Substituting Egs. (11) and (12) into Eq. (10), we have

da+ B=1. (13)

In order to determine the partitioning of vorticity it is
necessary to derive another additive relation. The additive
relation for acceleration vectors is obtained by taking the
time derivate of Eq. (9) as

Vy, =V, + Vs, (14)

where V), is an acceleration vector for the bulk rock, V; and
V, are acceleration vectors for the less viscous phase and for
the more viscous phase, respectively. Taking the divergence
of Eq. (14), we have

1
b b

wf] - (1,1[1);,1)}]. - %’wl F]

1
2 2

= (15)

where the following relation of divergence of an accelera-
tion vector for incompressible flow is used (e.g. Truesdell
and Toupin, 1960)

V-V =D;D; - %|w|2, (16)
where V is the acceleration vector, Dj; is the deformation
rate tensor, || is the magnitude of the vorticity vector. It
should be noticed that each phase in the ideal linear viscous
bimineralic rock is assumed to be incompressible and also
that the bulk rock is incompressible because the volume
fraction of the two phases is assumed to be constant.
Accordingly, substituting Eqs. (11) and (12) into Eq. (15),
we have

2ADYDY — ¢\ DD — DD = (1 — 1o’ — by )|y |

A7)

Consequently, vorticity partitioning coefficients for each
phase, a and B, can be determined from Egs. (13) and
(17). It will be shown below that the partitioning of vorticity
is derived for mode 1 and mode 2 as in the case of the
partitioning of deformation rates.

3.1. The partitioning of vorticity in mode 1 behaviour

Deformation rate of each phase in mode 1 behaviour is
given by Egs. (3). Substituting Egs. (3) into Eq. (17), we have

b’ + g = 1. (18)

From Egs. (13) and (18) vorticity partitioning coefficients of
each phase are equal to unity since

a=B=1. (19)

This means that there is no partitioning of vorticity in mode 1
behaviour. Hence, it can be said that where there is no parti-
tioning of deformation rate, there is no partitioning of vorticity
either.

3.2. The partitioning of vorticity in mode 2 behaviour

Deformation rates of each phase in mode 2 behaviour are
given by Eqs. (4)—(6). Substituting these into Eq. (17), we
have

2DYD} — ¢ PiDyD) — $,P3D)DY)

=(1— ¢ o — g ]’ (20)

Using a kinematic vorticity number for the bulk rock, @y,
which is defined as (e.g. Truesdell, 1953)

| oy |
\ /2D};D};

Eq. (20) can be rewritten as

Wip =

1
—— (1= ¢Pi — P =1 — & — pp). (21

(@)

Accordingly, from Eqgs. (13) and (21) vorticity partitioning
coefficients of each phase in mode 2 are obtained as

[, Bi] = [1 + %.%’
B w%,'lfl((bl——_lbim] (22)
and
w%b'%]‘ (23)

It is noted that there are two solutions as above, i.e. there
can be two ways for partitioning of vorticity in mode 2
behaviour. The type of partitioning of vorticity given by
matrix (22) is referred to as type 1 partitioning and that
given by matrix (23) as type 2 partitioning hereafter. It is
evident that partitioning of vorticity is dependent on the
kinematic vorticity number of the bulk rock in both types.
This means that the partitioning of vorticity is dependent not
only on material properties such as the viscosity contrast
and the volume fraction but also on the kinematics of bulk
rock flow, which is in contrast to the case of partitioning of
deformation rate.

In type 1 partitioning the vorticity partitioning coefficient
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Fig. 2. The relationships between the vorticity partition coefficients of each constituent phase and the viscosity contrast for different volume fractions at
various kinematical vorticity number for the bulk rock (wy,) in type 1 partititioning: (a) for the less viscous phase at w, = 0.8, (b) for the more viscous phase
at wy, = 0.8, (c) for the less viscous phase at wy, = 5, (d) for the more viscous phase at wy, = 5.

of the less viscous phase, «, is always less than unity
because the second term on the left side in matrix (22) is
negative. Conversely, the vorticity partitioning coefficient
of the more viscous phase, 3, in type 2 partitioning is
always greater than unity because the second term on the
right side in matrix (22) is negative. Hence, the more
viscous phase is more rotational than the less viscous
phase in type 1 partitioning. In addition, with decreasing
kinematic vorticity number of the bulk rock and increasing
viscosity contrast between the two phases, the vorticity
partitioning coefficient of the more viscous phase increases
while that of the less viscous phase decreases (Fig. 2). In
particular it should be noted that the vorticity partitioning
coefficient of the less viscous phase can be negative.

phases, a; and By, increase with increasing volume fraction
of the less viscous phase.

On the other hand, partitioning of vorticity in type 2
partitioning is almost opposite in behaviour to that of
type 1 partitioning. Thus, the less viscous phase is more
rotational than the more viscous phase in type 2. With
decreasing kinematic vorticity number of the bulk rock
and increasing viscosity contrast, the vorticity partitioning
coefficient of the less viscous phase increases while the
vorticity partitioning coefficient of the more viscous phase
decreases (Fig. 3); the vorticity partitioning coefficient of
the more viscous phase can be negative. Furthermore,
both vorticity partitioning coefficients, ey and 3y, decrease
with increasing volume fraction of the less viscous phase

Furthermore, the vorticity partitioning coefficients for both (Fig. 3).
:
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Fig. 3. The relationships between the vorticity partition coefficient of each constituent phase and the viscosity contrast for different volume fractions at various
kinematical vorticity number for the bulk rock (wy) in type 2 partititioning: (a) for the less viscous phase at w, = 0.8, (b) for the more viscous phase at
wy, = 0.8, (c) for the less viscous phase at wy, = 5, (d) for the more viscous phase at wy, = 5.
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4. The partitioning of vorticity into a rigid phase

Considerations given above have shown that there can
be three ways of partitioning vorticity in linear viscous
bimineralic rocks namely: no partitioning; type 1 partition-
ing; and type 2 partitioning. The first occurs only at uniform
strain rate. When flow occurs in bimineralic rocks at a
uniform viscous stress, either type 1 partitioning or type 2
partitioning can occur. In type 1 partitioning the more
viscous phase is more rotational, whereas in type 2 partition-
ing the less viscous phase is more rotational. A geologically
interesting situation is the case where one phase in a
bimineralic rock is nearly rigid in behaviour, because
many metamorphic rocks contain nearly rigid phases such
as garnet, cordierite, or feldspar porphyroblasts. The present
model can represent partitioning of vorticity in bimineralic
rocks in which one phase is rigid by assuming that the
viscosity contrast between two phases is infinite. Hence,
from Eq. (22) the vorticity partitioning coefficients for
type 1 partitioning are obtained as

A= 1+L]

, (24)
iy P Wi

lim [, ] = [1
and from Eq. (23) those for type 2 partitioning are obtained
as

1— ¢ 1 ] 25)

lim [oyq;, Byl = [1 + (7, 11— —
b0 @i, Py Wi
It is evident that the vorticity partitioning coefficient for the
rigid phase in type 1 partitioning in simple shearing is two
and that for type 2 partitioning is zero because the kinematic
vorticity number is equal to unity for simple shearing. This
means that material of the rigid phase rotates twice as fast as
the bulk rock by type 1 partitioning in simple shear but for
type 2 partitioning the rigid phase does not rotate at all with
respect to the external reference coordinate in simple shear.
It should be noted that the external reference coordinate is
chosen in such a way that flow becomes simple shear for the
bulk rock. In addition, it is shown that one phase may rotate
in the opposite direction to the rotation of the bulk rock for
certain kinematic vorticity numbers. This condition in type
1 partitioning is given by

Ty < L= ¢ . (26)

b

Sub-simple shearing (@i, < 1) of the bulk rock results in
opposite rotation sense of the less viscous phase in type 1
partitioning if the less viscous phase is less abundant than
the rigid phase (i.e. ¢; < 0.5). On the other hand, the con-
dition that the rigid phase rotates in opposite sense to that
of the bulk rock (or the less viscous phase) for type 2
partitioning is given by

Sub-simple shear in the bulk rock usually results in opposite
rotation sense of the rigid phase in type 2 partitioning.

5. Discussion

A flow model for ideal linear viscous bimineralic rocks is
developed in this paper. The model is an extension of the
previous model of Takeda (1998) which formulates the
effective viscosity and the partitioning of strain rate between
two phases in ideal linear viscous bimineralic rocks. The
present model deals with partitioning of vorticity between
the two phases.

Two modes of flow behaviour were found to occur, mode
1 and mode 2. Mode 1 is characterized by a linear depend-
ence of bulk rock viscosity on the volume fraction, by lack
of partitioning of strain rate (i.e. uniform strain rate) and by
lack of partitioning of vorticity (i.e. uniform vorticity).
Mode 2 is characterized by a non-linear dependence of
bulk rock viscosity on the volume fraction, by uneven par-
titioning of strain rate (non-uniform strain rate), and by
uneven partitioning of vorticity (non-uniform vorticity).
Furthermore, two types of partitioning of vorticity were
shown to occur in mode 2. One is that the more viscous
phase is more rotational than the less viscous phase (type
1 partitioning). The other is that the more viscous phase is
less rotational than the less viscous phase (type 2 partition-
ing). An important conclusion for ideal linear viscous
bimineralic rocks is that if partitioning of strain rate between
two phases occurs, partitioning of vorticity also occurs.

The effective viscosity of two-phase materials must be
greatly dependent on microstructure as well as composition
and physical properties of constituent phases. For uniformly
mixed and isotropic two-phase materials, however, two
bounds can be considered; that is, the Voigt bound and
the Reuss bound. The Voigt bound defines the upper limit
of effective viscosity of two-phase materials while the Reuss
bound defines the lower limit. An actual effective viscosity
of two-phase materials may lie somewhere between these
two bounds. The Voigt bound is derived under a uniform
strain rate condition between the two phases and is
expressed by an arithmetical mean weighted by a volume
fraction of each phase. The Reuss bound is derived under a
uniform stress condition between the two phases and is
expressed by an inverse harmonic mean weighted by a volume
fraction of each phase. As described above mode 1 behaviour
corresponds with the Voigt bound and mode 2 behaviour corre-
sponds with the Ruess bound when densities of the two phases
are the same. Hence, we can say that the present model
describes the rotational behaviours for the upper bound and
the lower bound cases of the bulk effective viscosities.

There are some deformation experiments of bimineralic
materials which show that strain is concentrated in a less
viscous phase and that the effective viscosity decreases non-
linearly with the volume fraction (e.g. Jordan, 1987; Ross et
al., 1987). Furthermore, observations of metamorphic,
deformed rocks also show that strain concentration occurs
in less viscous phases, such as quartz in quartz—feldspar
rocks. This implies that partitioning of strain rate occurs
among constituent phases in nature. Hence, we may
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conclude that mode 2 behaviour (lower bound behaviour) is
more important in considering a rotational behaviour of flow
in natural rocks.

Jeffery (1923) hydrodynamically analyzed the movement
of arigid object in homogeneous and infinitely large viscous
media in simple shear flow. Ghosh and Ramberg (1976)
applied the theory of Jeffery to the behaviour of a rigid
object under shearing with a pure shear component. They
showed that the vorticity of a spherical rigid object is identi-
cal to the vorticity of the bulk media. The prediction of the
theory of Jeffery (1923) for the rotation of a rigid phase may
look inconsistent with that of the present model. The present
model, however, contains the prediction of the theory of
Jeffery as follows. If the vorticity of a rigid phase is equal
to that of the bulk media, then, w, = w; = w,. Substituting
this relation into Eq. (15), we have

DYDY = ¢, DD} + d,D;D;. (28)

Further, additive relation of entropy production rate (or
dissipative energy rate) is given by (Takeda, 1998)

DD = ¢y i DEDY + ¢y s DED. (29)

Since a rigid phase is not strained, D?jD?j = (0. Then, from
Egs. (28) and (29) we have

é1 () — DDy = 0. (30)

It is evident that Eq. (30) is satisfied when p; = w;,. The
correspondence of the viscosity of the less viscous phase
with that of the bulk rock is valid only if a content of the
rigid phase is infinitely dilute (i.e. ¢, — 0). Accordingly,
the present model coincides with the theory of Jeffery
(1923) under the special condition that a rigid phase is infi-
nitely dilute.

The situation that one phase is rigid may be geologically
realistic because many porphyroblasts in metamorphic
rocks appear to behave as rigid phases. However, applic-
ability of the present model to rotational behaviour of flow
in natural bimineralic rocks is restricted for two main
reasons. One reason is that although Newtonian rheology
is assumed in this model, flow in most rocks may deviate
significantly from the ideal behaviour. The other reason is
that natural rocks may have more complex heterogeneous
features than those considered in the present model. The
present model is concerned with the properties of constitu-
ent phases and the volumetric proportion of the two phases
only. It is assumed that each phase is continuous, that is, a
continuum in the usual sense. However, phases in natural
rocks are actually not continuous on a microscopic scale.
For example, a quartz phase in quartz—feldspatic rocks such
as a pelitic schist is composed of many grains of quartz of
various shapes. Thus, the quartz phase contains complicated
grain boundaries in itself. Further, in the present model it
is assumed that both the bulk rock and each phase are
isotropic. Many minerals are, however, crystallographically
anisotropic. In addition, actual rocks often contain various
structural anisotropies such as schistosities, crenulation

cleavage, layering, and mineral lineations. The effects of
such anisotropies and heterogeneities in rocks cannot be
assessed by means of the present approach. Furthermore,
an evaluation of non-Newtonian behaviour of bimineralic
rocks is beyond the scope of this paper. Hence, applicability
of the present model to natural rocks is greatly limited.
Nevertheless, the present model is a first attempt to provide
a theoretical framework that treats the rotational behaviour
in polymineralic rocks, and hence, may be considered to be
areference model for more advanced theoretical and experi-
mental studies.

There are currently some controversies in the explanation
of the rotational behaviour of porphyroblasts in meta-
morphic rocks (e.g. Bell, 1985; Bell et al., 1992; Passchier
et al., 1992). At present our knowledge of the rheological
behaviour of heterogeneous rocks is limited. Furthermore,
our theoretical tools, including the present model, are poor
for understanding rheological behaviour of actual rocks.
The author believes, therefore, that any presumption for
rotational behaviour of rigid inclusions in natural rocks is
too early to be taken and that more experimental and theo-
retical investigations must be performed for polymineralic
materials.
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